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A Markov process is a continuous-time Markov chain:

Let S be a finite or countable set (indexed by i = 1,2, ...)
Let (Xi)i>0 be a SP with X; : (2, A, P) — Sforall t.

Definition: (X;) is a homogeneous Markov process (HMP) on S

> (i) P[Xpes = j1Xu, 0 < U < f] = P[Xpis = jIXi] VE, 8V
> (i) P[Xees = j1 X = 1] = P[Xs = j|Xo = 1] Vt,$ Vi,

Remarks:

» (i) is the Markov property, whereas (ii) is related to
time-homogeneity.

» (ii) allows for defining the transition functions
p;i(S) = P[Xt+s = j| Xt = 1]



Further remarks:

» As for Markov chains, we will collect the transition functions
pj(s) in the transition matrices P(s) = (pj;(s))-

» Those transition matrices P(s) are stochastic for all s, i.e.,
pij(s) € [0, 1] forall i,j and >, pj(s) = 1 for all /.

» The Chapman-Kolmogorov equations now state that
P(t+ s) = P(t)P(s)
that is,
P[Xers = j1Xo = 1] = Y _BXe = k|Xo = []P[Xs = j1Xo = K],
k

for all s, t and all i, j (exercise).



Let W; = inf{s > 0| Xi;-s # X;} be the survival time of state X; from ¢.

~» Theorem: leti € S. Then either
» () Wi|[Xs =i]=0a.s., or
> (i) Wi|[X; = i] = o< a.s., or
> (i) Wi|[ Xt = i] ~ Exp(\;) for some \; > 0.



Proof:
Let fi(s) := P[W; > s|X; = i] = P[Wy > s| Xy = i] (by homogeneity).
Then, for all 51,5, > 0,
fi(81+82) = P[Wo > s1+52|Xo = 1] = P[Wp > 51, Ws, > 55| Xp = 1]
=P[Ws, > so|Wh > 51, Xo = i[P[Wh > 51| Xp = ]
= P[Ws, > 2| Xs, = i]fi(S1) = fi(81)fi(S2).

Assume that 3sy > 0 such that fi(sp) > O (if this is not the case,
(i) holds). Then

» 0 < fi(so) = fi(so + 0) = fi(s0)fi(0), so that £;(0) = 1.

» Now,

1) = tim ST ) _ g oy 1) 5(O) _




Therefore, letting \; := —f/(0),

fi(s) |
i)~
so that
Inf(s) = Inf(s)—Inf(0) = | f"/((z)) du = /S(A,-) du = —\s,
o i 0

for all s > 0. Hence,
fi(s) = P[W; > s|X; = i] = exp(—A;S),

which establishes the result (note that (ii) corresponds to the
case \; = 0). O



Theorem: Leti € S. Then either
» () Wi|[Xs =i]=0a.s., or
> (i) Wi|[ Xt = i] = >0 a.s., or
> (i) Wt|[ Xt = i] ~ Exp()\;) for some \; > 0.

This result leads to the following classification of states:

» In case (i), / is said to be instantaneous
(as soon as the process goes to /, it goes away from it).

» In case (i), / is said to be absorbant
(if the process goes to /, it remains there forever).
» In case (iii), / is said to be stable

(if the process goes to i/, it remains there for some
exponentially distributed time).



Assume that (X;) is conservative (i.e. there is no instantaneous
state). Then a typical sample path is

Associate with (X;) both following SP:

» (a) the process of survival times (T.1 — Tn)nen, Where
To=0and T 1 =Th+ Wr,neN;

» (b) the jump chain (X,)nen, where X, = X7,, n € N.



Theorem: Assume that (X;) is conservative. Then
PXns1 =), To1 — Ta> 8| Xo =gy .. .s Xn=in, T, ..., Tp)]
=P[Xoy1 =J, Top1 — Tn> 8| Xg = in] = e n° Py,
where P = (Py) is the transition matrix of a Markov chain such that

B — 0 ifiis stable
"7 1 1 ifiisabsorbant.

This shows that

» (a) the jump chain is a HMC and

» (b) conditionally on Xy, . .., Xp, the survival times T, — T
are independent.



If (X:) is a conservative HMP, we can determine
» the process of survival times (7,11 — Th)nen and
» the jump chain (X;)nen-

One might ask whether it is possible to go the other way
around, that is, to determine (X;) from

» the process of survival times (7,41 — Th)nen and
» the jump chain (X;)nen.
The answer:

Yes, provided that (X;) is regular, that is, is such that

lim T, = oc.
n—oo
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Definition: (N; = X;) is a Poisson process (with parameter
A > 0) & (X;) is a regular HMP, for which S = N,

010
. 01 0
P= 01 0 ;
and
Ao A
M A
=1 X



Poisson processes

A typical sample path:



Remarks:

» (i) The survival times Wy, := Wy, (n € Np) are i.i.d.
Exp()).

» (i) T, = >_IL, W, has an Erlang distribution with
parameters nand A, that is,

1- 30 d O g2t irt>0
FT”t:PT <t = i=0 =
(t) =FlTn < 1] { 0 ift < 0.

» (iii) For all t > 0, N; ~ P(At). Indeed,
k

(A"t
PN < K| =P[Tyy1 > ] =D e
i=0
so that P[N; = k] = P[N; < k] — P[N; < k — 1] = 8 e,

» (iv) Hence, E[W,] = 1/X and E[N{] = At (~ X\ is a rate).



How to check (ii)?
» Ty = Wi ~ Exp()), so that (ii) holds true for n = 1.

» It remains to show that if (ii) holds for n, it also holds for
n+ 1, which can be achieved in the following way:

Flon(t) = 1_P[Tn+1>t]:“/OOOP[Tn+1>f\Tn=U]fT”(“)d“
= 1 [ ET > ATy = i@
_ /tOOP[Tn+1 > t|Th = u]fT(u) du
= 1—/tP[Wn+1>f—U]fT" / F7(u

= 1_/0te—k<f—“>an(u) du — (FT"(oo)—FT"(t)) =



An important feature of Poisson processes:

Theorem: for all t, h and k,

k
P[Niyp— Ny =k [Ny, 0<u<t]=e M (A:I) :

Proof: From the Markov property,
P[Niyh— Nt = k| Ny, 0 < u < t] =P[Nirp — Nt = k| Ny).
Now, ]P)[Nt+h —Ni =k | N; = n] =7



Consider the SP (N := Niyp — Ny = Niypy — n| h > 0), with
survival times W, Wa, .. ., say.



Clearly,
» the jump chain of (N},) is that of a Poisson process, and
» Wh, Wi, ... arei.id. Exp(\).

As for W (that is clearly independent of the other W;’s),
P[Ws > w] = P[Wpi1 > A+ w| W, q > A
— P[Why1 > A+ W]/B[Wpy g > A] = e NATW) /g0 — oW,
for all w > 0, so that W, ~ Exp()\).
Hence, (N) is a Poisson process, and we have

(Ah)¥
K!

P[Ngsh — Ny = k| Ny = n] = P[N, = k] = e vk,



Theorem: for all t, h and k,

Ah)k
IP’[’\’Hh—’Vtzk\Nu,OSUSt]:e*”'u.

k!

This result implies that

» if0=fh<ti <t <..,the Ny, — N;'s are
independent.

> (i) Ny, — N, ~ P(A(tip1 — 1)) (stationarity of the

1

increments).

Part (ii) shows that
1—Mh+o(h) ifk=0
P[k eventsin [t, t + h)] = { Ah+ o(h) ifk=1
o(h) if k> 2.



Let (N;)1>0 be a Poisson process.
Let Yk, k € Ny be positive i.i.d. r.v/s (independent of (N})).

Definition: (St)t>0 is @ compound Poisson process

)

s _ 0 it Ny =0
t= MY N> 1.

This SP plays a crucial role in the most classical model in
actuarial sciences...



Denoting by Z; the wealth of an insurance company at time ¢,
this model is
Zi=u+ct— S,

where
» u is the initial wealth,
» cis the "income rate" (determining the premium), and

> St = (XN Yk)In>1) is @ compound Poisson process
that models the costs of all sinisters up to time t (there are
N; sinisters, with random costs Yy, Y2, ..., Yy, for the
company up to time t).



Compound Poisson processes

A typical sample path:



Let T = inf{t > 0| Z; < 0} be the time at which the company
goes bankrupt.

Let ¢(u) = P[T < oo | Zy = u] be the ruin probability (when
starting from Zy = u).

Then one can show the following:

Theorem: assume . = E[Yy] < co. Denote by \ the parameter
of the underlying Poisson process. Then,

» (i)ifc < Au,y¥(u) =1 forallu>0;
> (i) ifc > A\, ¥(u) < 1 forallu > 0.

This shows that if it does not charge enough, the company will
go bankrupt a.s.
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Consider a symmetric RW (starting from 0) X, = >, Y;
where the Yj's are i.i.d. with P[Y; = 1] = P[Y; = —1] = }.
Now, assume that, at each At units of time, we make a step
with length Ax. Then, writing n; = [t/(At)],

nt
Xe= (X)) Y,
=1

where we consider (X);>o as a continuous-time SP.

Our goal is to let Ax, At — 0 in such a way we obtain a
non-trivial limiting process. This requires a non-zero bounded
limiting value of

Var[X{] = (AX)ZVar[Zm: Y,} = (Ax)? znéVar[n] = (AX)2n;,
i=1 i=1

which leads to the choice Ax = o/ At; the resulting variance is
then o2t (note that we always have E[X;] = 0).



What are the properties of the limiting process (X)¢>0?
Nt
Xe= i A Y
= Am,oVAL Y,

> XO =0.
» X; is the limit of a sum of i.i.d. r.v’s properly normalized so
that E[X;] = 0 and Var[X;] = o?t. Hence, X; ~ N(0, o%t);
» for each RW, the "increments" in disjoint time intervals are
1l. ~» This should also hold in the limit, i.e.,
VO<t <b<... <, th_Xt1 , Xt3—X12, R 7ka—ka71 are ;

» for each RW, the increments are stationary (that is, their
distribution in [k, k + n] does not depend on k). ~ This
should also hold in the limit, i.e.

VS, t>0, Xes— Xe 2 Xs — X



This leads to the following definition:

Definition: the SP (X;);>0 is a Brownian motion <
> Xo =0.
for all t > 0, X; ~ N(0, 5°t);
the increments in disjoint time-intervals are 1L, i.e.
VO<th<b<...< b, th_Xt1 , XtS—th, Ce 7th_th71 are IL;

v

v

v

the increments in equal-length time-intervals are
stationary, i.e.

Vs, t >0, Xpps— Xi 2 Xs — Xo;

v

the sample paths of (X;);>o are a.s. continuous.



A typical sample path:

It can be shown that the sample paths (a.s.) are nowhere
differentiable...



Remarks:

» Also called a Wiener Process (this type of SP was first
studied rigourously by Wiener in 1923. It was used earlier
by Brown and Einstein as a model for the motion of a small
particle immersed in a liquid or a gas, and hence subject to
mollecular collisions).

» If o =1, (X;) is said to be standard. Clearly, if o is known,
one can always assume the underlying process is
standard.

» Sometimes, one also includes a drift in the model
~> (Xt := pt + oBt), where By a standard BM.

» In finance, p is the trend and o is the volatility.



A typical sample path:
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Using the independence between disjoint increments, we
straightforwardly obtain

P[Xt+3 S B‘Xu,o S u S t] - P[Xt+3 € B‘ Xt]

This is nothing but the Markov property.

Also, note that
P[Xt1s € B| Xt = X] = P[Xp1s — Xe € B— x| X; — Xo = X]
— P[Xos — Xe € B— X] = P[Xers — Xs + x € B] = P[Y € B,

where Y ~ N(x, s). Hence,

1
\V2rs

P[Xpss € B| X; = X] = / e~ U—x7/(25) g
B



Continuous-time martingales are defined in a similar way as for
discrete-time ones. More precisely:

The SP (M;)+> is a martingale w.r.t. the filtration (A¢)i>0 <
> (i) (Mt)t>0 is adapted to (A¢)i>o.
> (i) E[|My]] < oo for all .
> (iii) E[M¢|As] = Ms a.s. for all s < t.

Proposition: /et (X;) be a standard BM. Then
> (@) (Xt)r=0,
> (b) (XI? — t)tZO: and

02t
> (¢) {e"7 2 )0

are martingales w.rt. Ay = o(Xy,,0 <u <t)



Proof: in each case, (i) is trivial and (ii) is left as an exercise.
As for (iii):

(a) E[Xt|As] = E[Xs| As] + E[Xt — Xs|As] = Xs + E[X; — Xs] = Xs.

(b)

E[X? — tAs] = E[(Xs+ (X — Xs))?|As] — t

X2 + 2XE[X; — Xs|As] + E[(X; — Xs)?|As] — t
X2+ 2X:E[X; — Xo] + E[(X: — Xs)?] — t

X2 + Var[X; — Xs] — t

X2+ (t—s)—t

= X?—s.



E |:60Xt_0§[./45:| — eexs—%ztE _ee(Xt_XS)‘AS:|

o
— X-%'R eo(xt_xs)}

2 -
OXs— L1t 0\ t—sZ
_ T [V

where Z ~ N(0,1). But

~No

E [evisz] _ / RN =L
[ } R \/27‘(‘

(z—6vT5)?
2

92<rs>/ e d
= @ 2 —Qaz =€
R Ven

which yields the result.

92(tfs)



The optional stopping theorem (OST) still holds in this
continuous-time setup, yielding results such as the following:

Proposition: /et (X;) be a standard BM. Fix a, b > 0. Define
Tap:=inf{t >0 : X; ¢ (—a,b)}. Then

» (i) E[X7,] =0,

> (i) P[Xt,, = —a] = 25, P[X7,, = b] =

a1b’ and
» (iii) E[Tg] = ab.

a
a+b’

Proof: (i) this follows from the OST and the fact (X;) is a martingale.
(i) 0 = E[XTab] = (—a) X P[Xrab = —a] + b x (1 — IP[XTab = —a]).
Solving for P[X7,, = —4] yields the result.

(iii) The OST and the fact (X,2 — t) is a martingale imply that

E[X%ab — Tap) = E[XZ — 0] = 0, which yields

(—a)® x 225 + b% x 325 — E[Ta] = 0. O



2
As for the martingale <e9xf‘ezt> , it allows for establishing
t>0
results such as the following:

Proposition: /et (X;) be a standard BM. Fix c,d > 0. Then
P[X; > ct + d for some t > 0] = €729,
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Let (X;) be a SP.

Definition: (X;) is a Gaussian process < for all k, for all
h<b<.. <t (Xy,...,X) isaGaussian r.v.

Remark: the distribution of a Gaussian process is completely
determined by

» its mean function t — E[X;] and
» its autocovariance function (s, t) — Cov[Xs, Xi].

Proposition: A standard BM (X;) is a Gaussian process with
mean function t — E[X;] = 0 and autocovariance function
(s,t) — Cov[Xs, Xt] = min(s, t).

This might also be used as an alternative definition for BMs...



Proof: let (X;) be a standard BM.
()Fors <t X — Xs 2 Xi—s — Xs—s = Xt—s ~ N'(0,1 — 5).

By using the independence between disjoint increments, we
obtain,forO=:fh < i < b <... <k,

X, — Xo
th _ Xt1 ~ N(O,A),
th _.th—1

where A = ();) is diagonal with \; = t; — ti_1.



Hence,

Xi 1
k t Xﬁ — Xo
viX: — V/ )(.tg _ V/ _l —? 1 Xp _ Xt
i\t : - - :
i=1 )(.tk ’ —i 1 th — th_1

is normally distributed, so that (X;) is a Gaussian process.

(ii) Clearly, t — E[X;] = 0 for all ¢.

(iii) Eventually, assuming that s < t, we have

Cov[Xs, Xt] = Cov[Xs, Xs+(Xi—Xs)] = Var[Xs]+Cov[Xs, Xi—Xs] =

= 5+ Cov[Xs — Xo, X; — Xs] = s+ 0 = min(s, 1).
O

)



Let (Xt)tZO be a BM.

Definition: if (X;) is a BM, (X; — tX1)o<t<1 is @ Brownian
bridge.

Alternatively, it can be defined as a Gaussian process (over
(0, 1)) with mean function ¢t — E[X;] = 0 and autocovariance
function (s, t) — Cov[Xs, Xi] = min(s, t)(1 — max(s, t))
(exercise).

Application:

Let Xq,..., X, bei.i.d. with cdf F.
Let Fr(x) := L 3°7 Tjx<x) be the empirical cdf.

The LLN implies that Fy(x) %3 E[ljx,<x] = F(x) as n — co.

Actually, it can be shown that sup, g |Fn(x) — F(x)| 23 0 as n — oo
(Glivenko-Cantelli theorem).



Assume that Xy, ..., X, are i.i.d. Unif(0, 1)
(F(X) = XIjxeqo,q + Ipxs1y)-
Let Un(X) = % 2?21 (]I[XiSX] - X), X € [O, 1]

Then it can be shown that, as n — oo,

sup |Un(x)| 3 sup |U(x)],
x€[0,1] x€[0,1]

where (U(x))o<x<1 is @ Brownian bridge (Donsker’s theorem).

Coming back to the setup where Xj, ..., X, are i.i.d. with
(unknown) cdf F, the result above allows for testing

Ho: F=F

Hi: F# Fo,

where Fy is some fixed (continuous) cdf.



The so-called Kolmogorov-Smirnov test consists in rejecting Hg
if the value of

sup |Un(x)|:= sup
x€[0,1] x€[0,1]

\/>2<[FOX)<X - )

exceeds some critical value (that is computed from Donsker’s
theorem).

This is justified by the fact that, under Ho, Fo(X1), ..., Fo(Xn)
are i.i.d. Unif(0, 1) (exercise).



