STAT-F-407 Continuous-time processes

Thomas Verdebout

Université Libre de Bruxelles

Outline of the course

- 1. A short introduction.
- 2. Basic probability review.
- 3. Martingales.
- 4. Markov chains.

5. Markov processes, Poisson processes.

5.1. Markov processes.

5.2. Poisson processes.

6. Brownian motions.

A Markov process is a continuous-time Markov chain:

Let *S* be a finite or countable set (indexed by i = 1, 2, ...) Let $(X_t)_{t>0}$ be a SP with $X_t : (\Omega, \mathcal{A}, P) \to S$ for all *t*.

Definition: (X_t) is a homogeneous Markov process (HMP) on S \Leftrightarrow (i) $\mathbb{P}[X_{t+s} = j | X_u, 0 \le u \le t] = \mathbb{P}[X_{t+s} = j | X_t] \quad \forall t, s \forall j.$

$$\blacktriangleright \text{ (ii) } \mathbb{P}[X_{t+s} = j | X_t = i] = \mathbb{P}[X_s = j | X_0 = i] \quad \forall t, s \; \forall i, j.$$

Remarks:

- (i) is the Markov property, whereas (ii) is related to time-homogeneity.
- (ii) allows for defining the transition functions
 p_{ij}(s) = ℙ[*X_{t+s}* = *j*|*X_t* = *i*]

Further remarks:

- ► As for Markov chains, we will collect the transition functions $p_{ij}(s)$ in the transition matrices $P(s) = (p_{ij}(s))$.
- ► Those transition matrices P(s) are stochastic for all s, i.e., $p_{ij}(s) \in [0, 1]$ for all i, j and $\sum_j p_{ij}(s) = 1$ for all i.
- The Chapman-Kolmogorov equations now state that

$$P(t+s)=P(t)P(s)$$

that is,

$$\mathbb{P}[X_{t+s} = j | X_0 = i] = \sum_{k} \mathbb{P}[X_t = k | X_0 = i] \mathbb{P}[X_s = j | X_0 = k],$$

for all s, t and all i, j (exercise).

Let $W_t = \inf\{s > 0 \mid X_{t+s} \neq X_t\}$ be the survival time of state X_t from t.

 \rightsquigarrow **Theorem**: *let* $i \in S$. *Then either*

• (i)
$$W_t | [X_t = i] = 0$$
 a.s., or

• (ii)
$$W_t | [X_t = i] = \infty$$
 a.s., or

• (iii) $W_t | [X_t = i] \sim \operatorname{Exp}(\lambda_i)$ for some $\lambda_i > 0$.

Proof:

Let
$$f_i(s) := \mathbb{P}[W_t > s | X_t = i] = \mathbb{P}[W_0 > s | X_0 = i]$$
 (by homogeneity)
Then, for all $s_1, s_2 > 0$,
 $f_i(s_1+s_2) = \mathbb{P}[W_0 > s_1+s_2 | X_0 = i] = \mathbb{P}[W_0 > s_1, W_{s_1} > s_2 | X_0 = i]$
 $= \mathbb{P}[W_{s_1} > s_2 | W_0 > s_1, X_0 = i] \mathbb{P}[W_0 > s_1 | X_0 = i]$
 $= \mathbb{P}[W_{s_1} > s_2 | X_{s_1} = i] f_i(s_1) = f_i(s_1) f_i(s_2).$

Assume that $\exists s_0 > 0$ such that $f_i(s_0) > 0$ (if this is not the case, (i) holds). Then

► $0 < f_i(s_0) = f_i(s_0 + 0) = f_i(s_0)f_i(0)$, so that $f_i(0) = 1$.

Now,

$$f'_i(s) = \lim_{h \to 0} \frac{f_i(s+h) - f_i(s)}{h} = f_i(s) \lim_{h \to 0} \frac{f_i(h) - f_i(0)}{h} = f_i(s)f'_i(0).$$

Therefore, letting
$$\lambda_i := -f_i'(0),$$

 $rac{f_i'(s)}{f_i(s)} = -\lambda_i,$

so that

$$\ln f_i(s) = \ln f_i(s) - \ln f_i(0) = \int_0^s \frac{f_i'(u)}{f_i(u)} du = \int_0^s (-\lambda_i) du = -\lambda_i s,$$

for all s > 0. Hence,

$$f_i(s) = \mathbb{P}[W_t > s | X_t = i] = \exp(-\lambda_i s),$$

which establishes the result (note that (ii) corresponds to the case $\lambda_i = 0$).

Theorem: Let $i \in S$. Then either

• (i)
$$W_t | [X_t = i] = 0 \text{ a.s., or}$$

• (ii)
$$W_t | [X_t = i] = \infty$$
 a.s., or

• (iii)
$$W_t | [X_t = i] \sim \operatorname{Exp}(\lambda_i)$$
 for some $\lambda_i > 0$.

This result leads to the following classification of states:

- In case (i), i is said to be instantaneous (as soon as the process goes to i, it goes away from it).
- In case (ii), *i* is said to be absorbant (if the process goes to *i*, it remains there forever).
- In case (iii), *i* is said to be stable (if the process goes to *i*, it remains there for some exponentially distributed time).

Assume that (X_t) is conservative (i.e. there is no instantaneous state). Then a typical sample path is

Associate with (X_t) both following SP:

- ► (a) the process of survival times $(T_{n+1} T_n)_{n \in \mathbb{N}}$, where $T_0 = 0$ and $T_{n+1} = T_n + W_{T_n}$, $n \in \mathbb{N}$;
- ▶ (b) the jump chain $(\tilde{X}_n)_{n \in \mathbb{N}}$, where $\tilde{X}_n = X_{T_n}$, $n \in \mathbb{N}$.

Theorem: Assume that (X_t) is conservative. Then

$$\mathbb{P}[\tilde{X}_{n+1} = j, T_{n+1} - T_n > s \,|\, \tilde{X}_0 = i_0, \dots, \tilde{X}_n = i_n, T_1, \dots, T_n] \\ = \mathbb{P}[\tilde{X}_{n+1} = j, T_{n+1} - T_n > s \,|\, \tilde{X}_n = i_n] = e^{-\lambda_{i_n} s} \tilde{P}_{i_n j},$$

where $\tilde{P} = (\tilde{P}_{ij})$ is the transition matrix of a Markov chain such that $\tilde{P}_{ii} = \begin{cases} 0 & \text{if } i \text{ is stable} \\ 1 & \text{if } i \text{ is absorbant.} \end{cases}$

This shows that

- (a) the jump chain is a HMC and
- ▶ (b) conditionally on $\tilde{X}_0, \ldots, \tilde{X}_n$, the survival times $T_{n+1} T_n$ are independent.

If (X_t) is a conservative HMP, we can determine

- ▶ the process of survival times $(T_{n+1} T_n)_{n \in \mathbb{N}}$ and
- the jump chain $(\tilde{X}_n)_{n \in \mathbb{N}}$.

One might ask whether it is possible to go the other way around, that is, to determine (X_t) from

- ▶ the process of survival times $(T_{n+1} T_n)_{n \in \mathbb{N}}$ and
- the jump chain $(\tilde{X}_n)_{n \in \mathbb{N}}$.

The answer:

Yes, provided that (X_t) is regular, that is, is such that

$$\lim_{n\to\infty} T_n = \infty.$$

Outline of the course

- 1. A short introduction.
- 2. Basic probability review.
- 3. Martingales.
- 4. Markov chains.
- 5. Markov processes, Poisson processes.
 - 5.1. Markov processes.

5.2. Poisson processes.

6. Brownian motions.

Definition: $(N_t = X_t)$ is a Poisson process (with parameter $\lambda > 0) \Leftrightarrow (X_t)$ is a regular HMP, for which $S = \mathbb{N}$,

$$\tilde{P} = \left(egin{array}{cccccc} 0 & 1 & 0 & & & \ 0 & 1 & 0 & & \ & 0 & 1 & 0 & \ & & \ddots & \ddots & \ddots \end{array}
ight),$$

and

$$\begin{pmatrix} \lambda_0 \\ \lambda_1 \\ \lambda_2 \\ \vdots \end{pmatrix} = \begin{pmatrix} \lambda \\ \lambda \\ \lambda \\ \vdots \end{pmatrix}$$

٠

A typical sample path:

Remarks:

- ► (i) The survival times $W_n := W_{T_{n-1}}$ $(n \in \mathbb{N}_0)$ are i.i.d. Exp (λ) .
- (ii) $T_n = \sum_{i=1}^n W_i$ has an Erlang distribution with parameters *n* and λ , that is,

$$\mathcal{F}^{T_n}(t) = \mathbb{P}[T_n \leq t] = \begin{cases} 1 - \sum_{i=0}^{n-1} \frac{(\lambda t)^i}{i!} e^{-\lambda t} & \text{if } t \geq 0 \\ 0 & \text{if } t < 0. \end{cases}$$

► (iii) For all
$$t > 0$$
, $N_t \sim \mathcal{P}(\lambda t)$. Indeed,
 $\mathbb{P}[N_t \le k] = \mathbb{P}[T_{k+1} > t] = \sum_{i=0}^k \frac{(\lambda t)^i}{i!} e^{-\lambda t}$,
so that $\mathbb{P}[N_t = k] = \mathbb{P}[N_t \le k] - \mathbb{P}[N_t \le k - 1] = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$.

• (iv) Hence, $\mathbb{E}[W_n] = 1/\lambda$ and $\mathbb{E}[N_t] = \lambda t$ ($\rightsquigarrow \lambda$ is a rate).

How to check (ii)?

• $T_1 = W_1 \sim \text{Exp}(\lambda)$, so that (ii) holds true for n = 1.

It remains to show that if (ii) holds for n, it also holds for n+1, which can be achieved in the following way:

$$\begin{aligned} F^{T_{n+1}}(t) &= 1 - \mathbb{P}[T_{n+1} > t] = 1 - \int_0^\infty \mathbb{P}[T_{n+1} > t | T_n = u] f^{T_n}(u) \, du \\ &= 1 - \int_0^t \mathbb{P}[T_{n+1} > t | T_n = u] f^{T_n}(u) \, du \\ &- \int_t^\infty \mathbb{P}[T_{n+1} > t | T_n = u] f^{T_n}(u) \, du \\ &= 1 - \int_0^t \mathbb{P}[W_{n+1} > t - u] f^{T_n}(u) \, du - \int_t^\infty f^{T_n}(u) \, du \\ &= 1 - \int_0^t e^{-\lambda(t-u)} f^{T_n}(u) \, du - \left(F^{T_n}(\infty) - F^{T_n}(t)\right) = \dots \end{aligned}$$

An important feature of Poisson processes:

Theorem: for all t, h and k, $\mathbb{P}[N_{t+h} - N_t = k \mid N_u, 0 \le u \le t] = e^{-\lambda h} \frac{(\lambda h)^k}{k!}.$

Proof: From the Markov property,

 $\mathbb{P}[N_{t+h} - N_t = k \mid N_u, 0 \le u \le t] = \mathbb{P}[N_{t+h} - N_t = k \mid N_t].$

Now, $\mathbb{P}[N_{t+h} - N_t = k | N_t = n] =?$

Consider the SP ($\tilde{N}_h := N_{t+h} - N_t = N_{t+h} - n \mid h \ge 0$), with survival times $\tilde{W}_1, \tilde{W}_2, \ldots$, say.

Clearly,

- the jump chain of (\tilde{N}_h) is that of a Poisson process, and
- $\tilde{W}_2, \tilde{W}_3, \ldots$ are i.i.d. $Exp(\lambda)$.

As for \tilde{W}_1 (that is clearly independent of the other \tilde{W}_i 's),

$$\begin{split} \mathbb{P}[\tilde{W}_1 > w] &= \mathbb{P}[W_{n+1} > \Delta + w \mid W_{n+1} > \Delta] \\ &= \mathbb{P}[W_{n+1} > \Delta + w] / \mathbb{P}[W_{n+1} > \Delta] = e^{-\lambda(\Delta+w)} / e^{-\lambda\Delta} = e^{-\lambda w}, \end{split}$$
 for all $w > 0$, so that $\tilde{W}_1 \sim \operatorname{Exp}(\lambda)$.

Hence, (\tilde{N}_h) is a Poisson process, and we have

$$\mathbb{P}[N_{t+h} - N_t = k \mid N_t = n] = \mathbb{P}[\tilde{N}_h = k] = e^{-\lambda h} \frac{(\lambda h)^k}{k!}, \quad \forall k.$$

Theorem: for all t, h and k, $\mathbb{P}[N_{t+h} - N_t = k \mid N_u, 0 \le u \le t] = e^{-\lambda h} \frac{(\lambda h)^k}{k!}.$

This result implies that

- (i) if 0 = t₀ < t₁ < t₂ < ..., the N_{t_{i+1}} − N_{t_i}'s are independent.
- (ii) N_{t_{i+1}} − N_{t_i} ∼ P(λ(t_{i+1} − t_i)) (stationarity of the increments).

Part (ii) shows that

$$\mathbb{P}[k \text{ events in } [t, t+h)] = \begin{cases} 1 - \lambda h + o(h) & \text{if } k = 0\\ \lambda h + o(h) & \text{if } k = 1\\ o(h) & \text{if } k \ge 2. \end{cases}$$

Let $(N_t)_{t\geq 0}$ be a Poisson process. Let Y_k , $k \in \mathbb{N}_0$ be positive i.i.d. r.v.'s (independent of (N_t)).

Definition: $(S_t)_{t\geq 0}$ is a compound Poisson process

$$S_t = \begin{cases} 0 & \text{if } N_t = 0\\ \sum_{k=1}^{N_t} Y_k & \text{if } N_t \ge 1. \end{cases}$$

This SP plays a crucial role in the most classical model in actuarial sciences...

Denoting by Z_t the wealth of an insurance company at time t, this model is

$$Z_t = u + c t - S_t,$$

where

- u is the initial wealth,
- c is the "income rate" (determining the premium), and
- S_t = (∑_{k=1}^{N_t} Y_k)I_[N_t≥1] is a compound Poisson process that models the costs of all sinisters up to time *t* (there are N_t sinisters, with random costs Y₁, Y₂,..., Y_{N_t} for the company up to time *t*).

A typical sample path:

Let $T = \inf\{t > 0 | Z_t < 0\}$ be the time at which the company goes bankrupt.

Let $\psi(u) = \mathbb{P}[T < \infty | Z_0 = u]$ be the ruin probability (when starting from $Z_0 = u$).

Then one can show the following:

Theorem: assume $\mu = \mathbb{E}[Y_k] < \infty$. Denote by λ the parameter of the underlying Poisson process. Then,

(i) if
$$c \leq \lambda \mu$$
, $\psi(u) = 1$ for all $u > 0$;

• (ii) if $c > \lambda \mu$, $\psi(u) < 1$ for all u > 0.

This shows that if it does not charge enough, the company will go bankrupt a.s.

Outline of the course

- 1. A short introduction.
- 2. Basic probability review.
- 3. Martingales.
- 4. Markov chains.
- 5. Markov processes, Poisson processes.
- 6. Brownian motions.
 - 6.1. Definition.
 - 6.2. Markov property, martingales.
 - 6.3. Gaussian processes and Brownian bridges.

Outline of the course

- 1. A short introduction.
- 2. Basic probability review.
- 3. Martingales.
- 4. Markov chains.
- 5. Markov processes, Poisson processes.
- 6. Brownian motions.

6.1. Definition.

- 6.2. Markov property, martingales.
- 6.3. Gaussian processes and Brownian bridges.

A heuristic introduction

Consider a symmetric RW (starting from 0) $X_n = \sum_{i=1}^n Y_i$, where the Y_i 's are i.i.d. with $\mathbb{P}[Y_i = 1] = \mathbb{P}[Y_i = -1] = \frac{1}{2}$. Now, assume that, at each Δt units of time, we make a step with length Δx . Then, writing $n_t = \lfloor t/(\Delta t) \rfloor$,

$$X_t = (\Delta x) \sum_{i=1}^{n_t} Y_i,$$

where we consider $(X_t)_{t\geq 0}$ as a continuous-time SP.

Our goal is to let $\Delta x, \Delta t \rightarrow 0$ in such a way we obtain a non-trivial limiting process. This requires a non-zero bounded limiting value of

$$\operatorname{Var}[X_t] = (\Delta x)^2 \operatorname{Var}\left[\sum_{i=1}^{n_t} Y_i\right] = (\Delta x)^2 \sum_{i=1}^{n_t} \operatorname{Var}[Y_i] = (\Delta x)^2 n_t,$$

which leads to the choice $\Delta x = \sigma \sqrt{\Delta t}$; the resulting variance is then $\sigma^2 t$ (note that we always have $\mathbb{E}[X_t] = 0$).

A heuristic introduction

What are the properties of the limiting process $(X_t)_{t>0}$?

$$X_t = \lim_{\Delta t \to 0} \sigma \sqrt{\Delta t} \sum_{i=1}^{n_t} Y_i$$

 $\blacktriangleright X_0 = 0.$

- X_t is the limit of a sum of i.i.d. r.v.'s properly normalized so that E[X_t] = 0 and Var[X_t] = σ²t. Hence, X_t ~ N(0, σ²t);
- ▶ for each RW, the "increments" in disjoint time intervals are ⊥⊥. → This should also hold in the limit, i.e.,

 $\forall 0 \leq t_1 < t_2 < \ldots < t_k, \quad X_{t_2} - X_{t_1}, X_{t_3} - X_{t_2}, \ldots, X_{t_k} - X_{t_{k-1}} \text{ are } \exists t_1;$

For each RW, the increments are stationary (that is, their distribution in [k, k + n] does not depend on k). → This should also hold in the limit, i.e.

$$\forall s, t > 0, \quad X_{t+s} - X_t \stackrel{\mathcal{D}}{=} X_s - X_0.$$

This leads to the following definition:

Definition: the SP $(X_t)_{t\geq 0}$ is a Brownian motion \Leftrightarrow

- ► $X_0 = 0.$
- for all t > 0, $X_t \sim \mathcal{N}(0, \sigma^2 t)$;
- the increments in disjoint time-intervals are \perp , i.e.

 $\forall 0 \leq t_1 < t_2 < \ldots < t_k, \quad X_{t_2} - X_{t_1}, X_{t_3} - X_{t_2}, \ldots, X_{t_k} - X_{t_{k-1}} \text{ are } \bot\!\!\!\!\bot;$

 the increments in equal-length time-intervals are stationary, i.e.

$$\forall s, t > 0, \quad X_{t+s} - X_t \stackrel{\mathcal{D}}{=} X_s - X_0;$$

• the sample paths of $(X_t)_{t\geq 0}$ are a.s. continuous.

A typical sample path:

It can be shown that the sample paths (a.s.) are nowhere differentiable...

Remarks:

- Also called a Wiener Process (this type of SP was first studied rigourously by Wiener in 1923. It was used earlier by Brown and Einstein as a model for the motion of a small particle immersed in a liquid or a gas, and hence subject to mollecular collisions).
- If σ = 1, (X_t) is said to be standard. Clearly, if σ is known, one can always assume the underlying process is standard.
- Sometimes, one also includes a drift in the model $\rightsquigarrow (X_t := \mu t + \sigma B_t)$, where B_t a standard BM.
- In finance, μ is the trend and σ is the volatility.

A typical sample path:

Outline of the course

- 1. A short introduction.
- 2. Basic probability review.
- 3. Martingales.
- 4. Markov chains.
- 5. Markov processes, Poisson processes.
- 6. Brownian motions.
 - 6.1. Definition.

6.2. Markov property, martingales.

6.3. Gaussian processes and Brownian bridges.

BM and the Markov property

Using the independence between disjoint increments, we straightforwardly obtain

$$\mathbb{P}[X_{t+s} \in B \mid X_u, 0 \le u \le t] = \mathbb{P}[X_{t+s} \in B \mid X_t].$$

This is nothing but the Markov property.

Also, note that

$$\mathbb{P}[X_{t+s} \in B \mid X_t = x] = \mathbb{P}[X_{t+s} - X_t \in B - x \mid X_t - X_0 = x]$$
$$= \mathbb{P}[X_{t+s} - X_t \in B - x] = \mathbb{P}[X_{t+s} - X_t + x \in B] = \mathbb{P}[Y \in B],$$

where $Y \sim \mathcal{N}(x, s)$. Hence,

$$\mathbb{P}[X_{t+s} \in B \mid X_t = x] = \int_B \frac{1}{\sqrt{2\pi s}} e^{-(y-x)^2/(2s)} \, dy.$$

Continuous-time martingales are defined in a similar way as for discrete-time ones. More precisely:

The SP $(M_t)_{t\geq 0}$ is a martingale w.r.t. the filtration $(\mathcal{A}_t)_{t\geq 0}$ \Leftrightarrow

- (i) $(M_t)_{t\geq 0}$ is adapted to $(\mathcal{A}_t)_{t\geq 0}$.
- (ii) $\mathbb{E}[|M_t|] < \infty$ for all *t*.
- (iii) $\mathbb{E}[M_t | A_s] = M_s$ a.s. for all s < t.

Proposition: let (X_t) be a standard BM. Then

• (a)
$$(X_t)_{t\geq 0}$$
,

• (c)
$$\{e^{\theta X_t - \frac{\theta^2 t}{2}}\}_{t \ge 0}$$

are martingales w.r.t. $A_t = \sigma(X_u, 0 \le u \le t)$

Proof: in each case, (i) is trivial and (ii) is left as an exercise. As for (iii):

(a)
$$\mathbb{E}[X_t|\mathcal{A}_s] = \mathbb{E}[X_s|\mathcal{A}_s] + \mathbb{E}[X_t - X_s|\mathcal{A}_s] = X_s + \mathbb{E}[X_t - X_s] = X_s.$$

(b)

$$\begin{split} \mathbb{E}[X_t^2 - t | \mathcal{A}_s] &= \mathbb{E}[(X_s + (X_t - X_s))^2 | \mathcal{A}_s] - t \\ &= X_s^2 + 2X_s \mathbb{E}[X_t - X_s | \mathcal{A}_s] + \mathbb{E}[(X_t - X_s)^2 | \mathcal{A}_s] - t \\ &= X_s^2 + 2X_s \mathbb{E}[X_t - X_s] + \mathbb{E}[(X_t - X_s)^2] - t \\ &= X_s^2 + \operatorname{Var}[X_t - X_s] - t \\ &= X_s^2 + (t - s) - t \\ &= X_s^2 - s. \end{split}$$

(C)

$$\mathbb{E}\left[e^{\theta X_{t}-\frac{\theta^{2}t}{2}}|\mathcal{A}_{s}\right] = e^{\theta X_{s}-\frac{\theta^{2}t}{2}}\mathbb{E}\left[e^{\theta(X_{t}-X_{s})}|\mathcal{A}_{s}\right]$$
$$= e^{\theta X_{s}-\frac{\theta^{2}t}{2}}\mathbb{E}\left[e^{\theta(X_{t}-X_{s})}\right]$$
$$= e^{\theta X_{s}-\frac{\theta^{2}t}{2}}\mathbb{E}\left[e^{\theta\sqrt{t-s}Z}\right],$$

where $Z \sim \mathcal{N}(0, 1)$. But

$$\mathbb{E}\left[e^{\theta\sqrt{t-s}Z}\right] = \int_{\mathbb{R}} e^{\theta\sqrt{t-s}z} \frac{e^{-\frac{z^2}{2}}}{\sqrt{2\pi}} dz \\ = e^{\frac{\theta^2(t-s)}{2}} \int_{\mathbb{R}} \frac{e^{-\frac{(z-\theta\sqrt{t-s})^2}{2}}}{\sqrt{2\pi}} dz = e^{\frac{\theta^2(t-s)}{2}},$$

 \square

which yields the result.

The optional stopping theorem (OST) still holds in this continuous-time setup, yielding results such as the following:

Proposition: *let* (X_t) *be a standard BM. Fix* a, b > 0. *Define* $T_{ab} := \inf\{t > 0 : X_t \notin (-a, b)\}$. *Then*

• (i)
$$\mathbb{E}[X_{T_{ab}}] = 0$$
,

• (ii)
$$\mathbb{P}[X_{T_{ab}} = -a] = \frac{b}{a+b}$$
, $\mathbb{P}[X_{T_{ab}} = b] = \frac{a}{a+b}$, and

Proof: (i) this follows from the OST and the fact (X_t) is a martingale. (ii) $0 = \mathbb{E}[X_{T_{ab}}] = (-a) \times \mathbb{P}[X_{T_{ab}} = -a] + b \times (1 - \mathbb{P}[X_{T_{ab}} = -a])$. Solving for $\mathbb{P}[X_{T_{ab}} = -a]$ yields the result. (iii) The OST and the fact $(X_t^2 - t)$ is a martingale imply that $\mathbb{E}[X_{T_{ab}}^2 - T_{ab}] = \mathbb{E}[X_0^2 - 0] = 0$, which yields $(-a)^2 \times \frac{b}{a+b} + b^2 \times \frac{a}{a+b} - \mathbb{E}[T_{ab}] = 0$.

As for the martingale $\left(e^{\theta X_t - \frac{\theta^2 t}{2}}\right)_{t \ge 0}$, it allows for establishing results such as the following:

Proposition: let (X_t) be a standard BM. Fix c, d > 0. Then $\mathbb{P}[X_t \ge ct + d \text{ for some } t \ge 0] = e^{-2cd}$.

Outline of the course

- 1. A short introduction.
- 2. Basic probability review.
- 3. Martingales.
- 4. Markov chains.
- 5. Markov processes, Poisson processes.
- 6. Brownian motions.
 - 6.1. Definition.
 - 6.2. Markov property, martingales.

6.3. Gaussian processes and Brownian bridges.

BM and Gaussian processes

Let (X_t) be a SP.

Definition: (X_t) is a Gaussian process \Leftrightarrow for all k, for all $t_1 < t_2 < \ldots < t_k$, $(X_{t_1}, \ldots, X_{t_k})'$ is a Gaussian r.v.

Remark: the distribution of a Gaussian process is completely determined by

- its mean function $t \mapsto \mathbb{E}[X_t]$ and
- ▶ its autocovariance function $(s, t) \mapsto \text{Cov}[X_s, X_t]$.

Proposition: A standard BM (X_t) is a Gaussian process with mean function $t \mapsto \mathbb{E}[X_t] = 0$ and autocovariance function $(s, t) \mapsto \text{Cov}[X_s, X_t] = \min(s, t)$.

This might also be used as an alternative definition for BMs...

BM and Gaussian processes

Proof: let (X_t) be a standard BM.

(i) For
$$s < t$$
, $X_t - X_s \stackrel{\mathcal{D}}{=} X_{t-s} - X_{s-s} = X_{t-s} \sim \mathcal{N}(0, t-s)$.

By using the independence between disjoint increments, we obtain, for $0 =: t_0 < t_1 < t_2 < \ldots < t_k$,

$$\left(egin{array}{c} X_{t_1} - X_0 \ X_{t_2} - X_{t_1} \ dots \ X_{t_k} - X_{t_{k-1}} \end{array}
ight) \sim \mathcal{N}(\mathbf{0}, \Lambda),$$

where $\Lambda = (\lambda_{ij})$ is diagonal with $\lambda_{ii} = t_i - t_{i-1}$.

BM and Gaussian processes

Hence,

$$\sum_{i=1}^{k} v_i X_{t_i} = v' \begin{pmatrix} X_{t_1} \\ X_{t_2} \\ \vdots \\ X_{t_k} \end{pmatrix} = v' \begin{pmatrix} -1 & 0 & & \\ -0 & -1 & 1 & \\ & \ddots & \ddots & \\ & & -1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} X_{t_1} - X_0 \\ X_{t_2} - X_{t_1} \\ \vdots \\ X_{t_k} - X_{t_{k-1}} \end{pmatrix}$$

is normally distributed, so that (X_t) is a Gaussian process.

(ii) Clearly, $t \mapsto \mathbb{E}[X_t] = 0$ for all t.

(iii) Eventually, assuming that s < t, we have

$$\operatorname{Cov}[X_s, X_t] = \operatorname{Cov}[X_s, X_s + (X_t - X_s)] = \operatorname{Var}[X_s] + \operatorname{Cov}[X_s, X_t - X_s] =$$
$$= s + \operatorname{Cov}[X_s - X_0, X_t - X_s] = s + 0 = \min(s, t).$$

Brownian bridges

Let $(X_t)_{t\geq 0}$ be a BM.

Definition: if (X_t) is a BM, $(X_t - tX_1)_{0 \le t \le 1}$ is a Brownian bridge.

Alternatively, it can be defined as a Gaussian process (over (0, 1)) with mean function $t \mapsto \mathbb{E}[X_t] = 0$ and autocovariance function $(s, t) \mapsto \text{Cov}[X_s, X_t] = \min(s, t)(1 - \max(s, t))$ (exercise).

Application:

Let X_1, \ldots, X_n be i.i.d. with cdf F. Let $F_n(x) := \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{[X_i \le x]}$ be the empirical cdf.

The LLN implies that $F_n(x) \stackrel{a.s.}{\to} \mathbb{E}[\mathbb{I}_{[X_1 \leq x]}] = F(x)$ as $n \to \infty$. Actually, it can be shown that $\sup_{x \in \mathbb{R}} |F_n(x) - F(x)| \stackrel{a.s.}{\to} 0$ as $n \to \infty$ (Glivenko-Cantelli theorem).

Brownian bridges

Assume that
$$X_1, ..., X_n$$
 are i.i.d. Unif $(0, 1)$
 $(F(x) = x \mathbb{I}_{[x \in [0,1]]} + \mathbb{I}_{[x>1]}).$
Let $U_n(x) := \frac{1}{\sqrt{n}} \sum_{i=1}^n (\mathbb{I}_{[X_i \le x]} - x), x \in [0,1].$

Then it can be shown that, as $n \to \infty$,

$$\sup_{x\in[0,1]}|U_n(x)|\stackrel{\mathcal{D}}{\to}\sup_{x\in[0,1]}|U(x)|,$$

where $(U(x))_{0 \le x \le 1}$ is a Brownian bridge (Donsker's theorem). Coming back to the setup where X_1, \ldots, X_n are i.i.d. with (unknown) cdf *F*, the result above allows for testing

$$\begin{cases} \mathcal{H}_0: & F = F_0 \\ \mathcal{H}_1: & F \neq F_0, \end{cases}$$

where F_0 is some fixed (continuous) cdf.

The so-called Kolmogorov-Smirnov test consists in rejecting \mathcal{H}_0 if the value of

$$\sup_{x \in [0,1]} |U_n(x)| := \sup_{x \in [0,1]} \left| \frac{1}{\sqrt{n}} \sum_{i=1}^n \left(\mathbb{I}_{[F_0(X_i) \le x]} - x \right) \right|$$

exceeds some critical value (that is computed from Donsker's theorem).

This is justified by the fact that, under \mathcal{H}_0 , $F_0(X_1), \ldots, F_0(X_n)$ are i.i.d. Unif(0, 1) (exercise).