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Markov processes

A Markov process is a continuous-time Markov chain:

Let S be a finite or countable set (indexed by i = 1,2, ...)
Let (Xt )t≥0 be a SP with Xt : (Ω,A,P)→ S for all t .

Definition: (Xt ) is a homogeneous Markov process (HMP) on S
⇔
I (i) P[Xt+s = j |Xu,0 ≤ u ≤ t ] = P[Xt+s = j |Xt ] ∀t , s ∀j .
I (ii) P[Xt+s = j |Xt = i] = P[Xs = j |X0 = i] ∀t , s ∀i , j .

Remarks:
I (i) is the Markov property, whereas (ii) is related to

time-homogeneity.
I (ii) allows for defining the transition functions

pij(s) = P[Xt+s = j |Xt = i]



Markov processes

Further remarks:

I As for Markov chains, we will collect the transition functions
pij(s) in the transition matrices P(s) = (pij(s)).

I Those transition matrices P(s) are stochastic for all s, i.e.,
pij(s) ∈ [0,1] for all i , j and

∑
j pij(s) = 1 for all i .

I The Chapman-Kolmogorov equations now state that

P(t + s) = P(t)P(s)

that is,

P[Xt+s = j |X0 = i] =
∑

k

P[Xt = k |X0 = i]P[Xs = j |X0 = k ],

for all s, t and all i , j (exercise).



Markov processes

Let Wt = inf{s > 0 |Xt+s 6= Xt} be the survival time of state Xt from t .

; Theorem: let i ∈ S. Then either
I (i) Wt |[Xt = i] = 0 a.s., or
I (ii) Wt |[Xt = i] =∞ a.s., or
I (iii) Wt |[Xt = i] ∼ Exp(λi) for some λi > 0.



Markov processes

Proof:

Let fi(s) := P[Wt > s|Xt = i] = P[W0 > s|X0 = i] (by homogeneity).
Then, for all s1, s2 > 0,

fi(s1+s2) = P[W0 > s1+s2|X0 = i] = P[W0 > s1,Ws1 > s2|X0 = i]

= P[Ws1 > s2|W0 > s1,X0 = i]P[W0 > s1|X0 = i]

= P[Ws1 > s2|Xs1 = i]fi(s1) = fi(s1)fi(s2).

Assume that ∃s0 > 0 such that fi(s0) > 0 (if this is not the case,
(i) holds). Then
I 0 < fi(s0) = fi(s0 + 0) = fi(s0)fi(0), so that fi(0) = 1.
I Now,

f ′i (s) = lim
h→0

fi(s + h)− fi(s)

h
= fi(s) lim

h→0

fi(h)− fi(0)

h
= fi(s)f ′i (0).



Markov processes

Therefore, letting λi := −f ′i (0),

f ′i (s)

fi(s)
= −λi ,

so that

ln fi(s) = ln fi(s)− ln fi(0) =

∫ s

0

f ′i (u)

fi(u)
du =

∫ s

0
(−λi) du = −λis,

for all s > 0. Hence,

fi(s) = P[Wt > s|Xt = i] = exp(−λis),

which establishes the result (note that (ii) corresponds to the
case λi = 0). �



Markov processes

Theorem: Let i ∈ S. Then either
I (i) Wt |[Xt = i] = 0 a.s., or
I (ii) Wt |[Xt = i] =∞ a.s., or
I (iii) Wt |[Xt = i] ∼ Exp(λi) for some λi > 0.

This result leads to the following classification of states:
I In case (i), i is said to be instantaneous

(as soon as the process goes to i , it goes away from it).
I In case (ii), i is said to be absorbant

(if the process goes to i , it remains there forever).
I In case (iii), i is said to be stable

(if the process goes to i , it remains there for some
exponentially distributed time).



Markov processes

Assume that (Xt ) is conservative (i.e. there is no instantaneous
state). Then a typical sample path is

Associate with (Xt ) both following SP:
I (a) the process of survival times (Tn+1 − Tn)n∈N, where

T0 = 0 and Tn+1 = Tn + WTn , n ∈ N;
I (b) the jump chain (X̃n)n∈N, where X̃n = XTn , n ∈ N.



Markov processes

Theorem: Assume that (Xt ) is conservative. Then

P[X̃n+1 = j , Tn+1 − Tn > s | X̃0 = i0, . . . , X̃n = in,T1, . . . ,Tn]

= P[X̃n+1 = j , Tn+1 − Tn > s | X̃n = in] = e−λin s P̃in j ,

where P̃ = (P̃ij) is the transition matrix of a Markov chain such that

P̃ii =

{
0 if i is stable
1 if i is absorbant.

This shows that

I (a) the jump chain is a HMC and
I (b) conditionally on X̃0, . . . , X̃n, the survival times Tn+1 − Tn

are independent.



Markov processes

If (Xt ) is a conservative HMP, we can determine
I the process of survival times (Tn+1 − Tn)n∈N and
I the jump chain (X̃n)n∈N.

One might ask whether it is possible to go the other way
around, that is, to determine (Xt ) from
I the process of survival times (Tn+1 − Tn)n∈N and
I the jump chain (X̃n)n∈N.

The answer:

Yes, provided that (Xt ) is regular, that is, is such that

lim
n→∞

Tn =∞.
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Poisson processes

Definition: (Nt = Xt ) is a Poisson process (with parameter
λ > 0)⇔ (Xt ) is a regular HMP, for which S = N,

P̃ =


0 1 0

0 1 0
0 1 0

. . . . . . . . .

 ,

and 
λ0
λ1
λ2
...

 =


λ
λ
λ
...

 .



Poisson processes

A typical sample path:



Poisson processes

Remarks:

I (i) The survival times Wn := WTn−1 (n ∈ N0) are i.i.d.
Exp(λ).

I (ii) Tn =
∑n

i=1 Wi has an Erlang distribution with
parameters n and λ, that is,

F Tn (t) = P[Tn ≤ t ] =

{
1−

∑n−1
i=0

(λt)i

i! e−λt if t ≥ 0
0 if t < 0.

I (iii) For all t > 0, Nt ∼ P(λt). Indeed,

P[Nt ≤ k ] = P[Tk+1 > t ] =
k∑

i=0

(λt)i

i!
e−λt ,

so that P[Nt = k ] = P[Nt ≤ k ]− P[Nt ≤ k − 1] = (λt)k

k! e−λt .

I (iv) Hence, E[Wn] = 1/λ and E[Nt ] = λt (; λ is a rate).



Poisson processes

How to check (ii)?
I T1 = W1 ∼ Exp(λ), so that (ii) holds true for n = 1.
I It remains to show that if (ii) holds for n, it also holds for

n + 1, which can be achieved in the following way:

F Tn+1(t) = 1− P[Tn+1 > t ] = 1−
∫ ∞

0
P[Tn+1 > t |Tn = u]f Tn (u) du

= 1−
∫ t

0
P[Tn+1 > t |Tn = u]f Tn (u) du

−
∫ ∞

t
P[Tn+1 > t |Tn = u]f Tn (u) du

= 1−
∫ t

0
P[Wn+1 > t − u]f Tn (u) du −

∫ ∞
t

f Tn (u) du

= 1−
∫ t

0
e−λ(t−u)f Tn (u) du −

(
F Tn (∞)− F Tn (t)

)
= . . .



Poisson processes

An important feature of Poisson processes:

Theorem: for all t ,h and k,

P[Nt+h − Nt = k |Nu, 0 ≤ u ≤ t ] = e−λh (λh)k

k !
.

Proof: From the Markov property,

P[Nt+h − Nt = k |Nu, 0 ≤ u ≤ t ] = P[Nt+h − Nt = k |Nt ].

Now, P[Nt+h − Nt = k |Nt = n] =?



Poisson processes

Consider the SP (Ñh := Nt+h − Nt = Nt+h − n |h ≥ 0), with
survival times W̃1, W̃2, . . ., say.



Poisson processes

Clearly,
I the jump chain of (Ñh) is that of a Poisson process, and
I W̃2, W̃3, . . . are i.i.d. Exp(λ).

As for W̃1 (that is clearly independent of the other W̃i ’s),

P[W̃1 > w ] = P[Wn+1 > ∆ + w |Wn+1 > ∆]

= P[Wn+1 > ∆ + w ]/P[Wn+1 > ∆] = e−λ(∆+w)/e−λ∆ = e−λw ,

for all w > 0, so that W̃1 ∼ Exp(λ).

Hence, (Ñh) is a Poisson process, and we have

P[Nt+h − Nt = k |Nt = n] = P[Ñh = k ] = e−λh (λh)k

k !
, ∀k .

�



Poisson processes

Theorem: for all t ,h and k,

P[Nt+h − Nt = k |Nu, 0 ≤ u ≤ t ] = e−λh (λh)k

k !
.

This result implies that

I (i) if 0 = t0 < t1 < t2 < . . ., the Nti+1 − Nti ’s are
independent.

I (ii) Nti+1 − Nti ∼ P(λ(ti+1 − ti)) (stationarity of the
increments).

Part (ii) shows that

P[k events in [t , t + h)] =


1− λh + o(h) if k = 0
λh + o(h) if k = 1

o(h) if k ≥ 2.



Compound Poisson processes

Let (Nt )t≥0 be a Poisson process.
Let Yk , k ∈ N0 be positive i.i.d. r.v.’s (independent of (Nt )).

Definition: (St )t≥0 is a compound Poisson process

m

St =

{
0 if Nt = 0∑Nt

k=1 Yk if Nt ≥ 1.

This SP plays a crucial role in the most classical model in
actuarial sciences...



Compound Poisson processes

Denoting by Zt the wealth of an insurance company at time t ,
this model is

Zt = u + c t − St ,

where

I u is the initial wealth,

I c is the "income rate" (determining the premium), and

I St =
(∑Nt

k=1 Yk
)
I[Nt≥1] is a compound Poisson process

that models the costs of all sinisters up to time t (there are
Nt sinisters, with random costs Y1,Y2, . . . ,YNt for the
company up to time t).



Compound Poisson processes

A typical sample path:



Compound Poisson processes

Let T = inf{t > 0 |Zt < 0} be the time at which the company
goes bankrupt.
Let ψ(u) = P[T <∞|Z0 = u] be the ruin probability (when
starting from Z0 = u).

Then one can show the following:

Theorem: assume µ = E[Yk ] <∞. Denote by λ the parameter
of the underlying Poisson process. Then,
I (i) if c ≤ λµ, ψ(u) = 1 for all u > 0;
I (ii) if c > λµ, ψ(u) < 1 for all u > 0.

This shows that if it does not charge enough, the company will
go bankrupt a.s.
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A heuristic introduction

Consider a symmetric RW (starting from 0) Xn =
∑n

i=1 Yi ,
where the Yi ’s are i.i.d. with P[Yi = 1] = P[Yi = −1] = 1

2 .
Now, assume that, at each ∆t units of time, we make a step
with length ∆x . Then, writing nt = bt/(∆t)c,

Xt = (∆x)

nt∑
i=1

Yi ,

where we consider (Xt )t≥0 as a continuous-time SP.
Our goal is to let ∆x ,∆t → 0 in such a way we obtain a
non-trivial limiting process. This requires a non-zero bounded
limiting value of

Var[Xt ] = (∆x)2Var
[ nt∑

i=1

Yi

]
= (∆x)2

nt∑
i=1

Var[Yi ] = (∆x)2nt ,

which leads to the choice ∆x = σ
√

∆t ; the resulting variance is
then σ2t (note that we always have E[Xt ] = 0).



A heuristic introduction

What are the properties of the limiting process (Xt )t≥0?

Xt = lim
∆t→0

σ
√

∆t
nt∑

i=1

Yi

I X0 = 0.
I Xt is the limit of a sum of i.i.d. r.v.’s properly normalized so

that E[Xt ] = 0 and Var[Xt ] = σ2t . Hence, Xt ∼ N (0, σ2t);
I for each RW, the "increments" in disjoint time intervals are
⊥⊥ . ; This should also hold in the limit, i.e.,
∀0 ≤ t1 < t2 < . . . < tk , Xt2−Xt1 ,Xt3−Xt2 , . . . ,Xtk−Xtk−1 are ⊥⊥;

I for each RW, the increments are stationary (that is, their
distribution in [k , k + n] does not depend on k ). ; This
should also hold in the limit, i.e.
∀s, t > 0, Xt+s − Xt

D
= Xs − X0.



Definition

This leads to the following definition:

Definition: the SP (Xt )t≥0 is a Brownian motion⇔

I X0 = 0.
I for all t > 0, Xt ∼ N (0, σ2t);
I the increments in disjoint time-intervals are ⊥⊥ , i.e.

∀0 ≤ t1 < t2 < . . . < tk , Xt2−Xt1 ,Xt3−Xt2 , . . . ,Xtk−Xtk−1 are ⊥⊥ ;

I the increments in equal-length time-intervals are
stationary, i.e.

∀s, t > 0, Xt+s − Xt
D
= Xs − X0;

I the sample paths of (Xt )t≥0 are a.s. continuous.



Definition

A typical sample path:

It can be shown that the sample paths (a.s.) are nowhere
differentiable...



Definition

Remarks:
I Also called a Wiener Process (this type of SP was first

studied rigourously by Wiener in 1923. It was used earlier
by Brown and Einstein as a model for the motion of a small
particle immersed in a liquid or a gas, and hence subject to
mollecular collisions).

I If σ = 1, (Xt ) is said to be standard. Clearly, if σ is known,
one can always assume the underlying process is
standard.

I Sometimes, one also includes a drift in the model
; (Xt := µt + σBt ), where Bt a standard BM.

I In finance, µ is the trend and σ is the volatility.



Definition

A typical sample path:
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BM and the Markov property

Using the independence between disjoint increments, we
straightforwardly obtain

P[Xt+s ∈ B |Xu,0 ≤ u ≤ t ] = P[Xt+s ∈ B |Xt ].

This is nothing but the Markov property.

Also, note that

P[Xt+s ∈ B |Xt = x ] = P[Xt+s − Xt ∈ B − x |Xt − X0 = x ]

= P[Xt+s − Xt ∈ B − x ] = P[Xt+s − Xt + x ∈ B] = P[Y ∈ B],

where Y ∼ N (x , s). Hence,

P[Xt+s ∈ B |Xt = x ] =

∫
B

1√
2πs

e−(y−x)2/(2s) dy .



BM and Martingales

Continuous-time martingales are defined in a similar way as for
discrete-time ones. More precisely:

The SP (Mt )t≥0 is a martingale w.r.t. the filtration (At )t≥0 ⇔
I (i) (Mt )t≥0 is adapted to (At )t≥0.
I (ii) E[|Mt |] <∞ for all t .
I (iii) E[Mt |As] = Ms a.s. for all s < t .

Proposition: let (Xt ) be a standard BM. Then
I (a) (Xt )t≥0,
I (b) (X 2

t − t)t≥0, and

I (c) {eθXt− θ2t
2 )t≥0

are martingales w.r.t. At = σ(Xu,0 ≤ u ≤ t)



BM and Martingales

Proof: in each case, (i) is trivial and (ii) is left as an exercise.
As for (iii):

(a) E[Xt |As] = E[Xs|As] + E[Xt − Xs|As] = Xs + E[Xt − Xs] = Xs.

(b)

E[X 2
t − t |As] = E[(Xs + (Xt − Xs))2|As]− t

= X 2
s + 2XsE[Xt − Xs|As] + E[(Xt − Xs)2|As]− t

= X 2
s + 2XsE[Xt − Xs] + E[(Xt − Xs)2]− t

= X 2
s + Var[Xt − Xs]− t

= X 2
s + (t − s)− t

= X 2
s − s.



BM and Martingales

(c)

E
[
eθXt− θ2t

2 |As

]
= eθXs− θ2t

2 E
[
eθ(Xt−Xs)|As

]
= eθXs− θ2t

2 E
[
eθ(Xt−Xs)

]
= eθXs− θ2t

2 E
[
eθ
√

t−sZ
]
,

where Z ∼ N (0,1). But

E
[
eθ
√

t−sZ
]

=

∫
R

eθ
√

t−sz e−
z2
2

√
2π

dz

= e
θ2(t−s)

2

∫
R

e−
(z−θ

√
t−s)2

2
√

2π
dz = e

θ2(t−s)
2 ,

which yields the result. �



BM and Martingales

The optional stopping theorem (OST) still holds in this
continuous-time setup, yielding results such as the following:

Proposition: let (Xt ) be a standard BM. Fix a,b > 0. Define
Tab := inf{t > 0 : Xt /∈ (−a,b)}. Then
I (i) E[XTab ] = 0,
I (ii) P[XTab = −a] = b

a+b , P[XTab = b] = a
a+b , and

I (iii) E[Tab] = ab.

Proof: (i) this follows from the OST and the fact (Xt ) is a martingale.
(ii) 0 = E[XTab ] = (−a)× P[XTab = −a] + b× (1− P[XTab = −a]).
Solving for P[XTab = −a] yields the result.
(iii) The OST and the fact (X 2

t − t) is a martingale imply that
E[X 2

Tab
− Tab] = E[X 2

0 − 0] = 0, which yields
(−a)2 × b

a+b + b2 × a
a+b − E[Tab] = 0. �



BM and Martingales

As for the martingale
(

eθXt− θ2t
2

)
t≥0

, it allows for establishing

results such as the following:

Proposition: let (Xt ) be a standard BM. Fix c,d > 0. Then
P[Xt ≥ ct + d for some t ≥ 0] = e−2cd .
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BM and Gaussian processes

Let (Xt ) be a SP.

Definition: (Xt ) is a Gaussian process⇔ for all k , for all
t1 < t2 < . . . < tk , (Xt1 , . . . ,Xtk )′ is a Gaussian r.v.

Remark: the distribution of a Gaussian process is completely
determined by
I its mean function t 7→ E[Xt ] and
I its autocovariance function (s, t) 7→ Cov[Xs,Xt ].

Proposition: A standard BM (Xt ) is a Gaussian process with
mean function t 7→ E[Xt ] = 0 and autocovariance function
(s, t) 7→ Cov[Xs,Xt ] = min(s, t).

This might also be used as an alternative definition for BMs...



BM and Gaussian processes

Proof: let (Xt ) be a standard BM.

(i) For s < t , Xt − Xs
D
= Xt−s − Xs−s = Xt−s ∼ N (0, t − s).

By using the independence between disjoint increments, we
obtain, for 0 =: t0 < t1 < t2 < . . . < tk , Xt1 − X0

Xt2 − Xt1...
Xtk − Xtk−1

 ∼ N (0,Λ),

where Λ = (λij) is diagonal with λii = ti − ti−1.



BM and Gaussian processes

Hence,

k∑
i=1

viXti = v ′

 Xt1
Xt2...
Xtk

 = v ′
(

1 0
−1 1

0 −1 1
. . .

. . .
−1 1

)−1( Xt1 − X0
Xt2 − Xt1...

Xtk − Xtk−1

)

is normally distributed, so that (Xt ) is a Gaussian process.

(ii) Clearly, t 7→ E[Xt ] = 0 for all t .

(iii) Eventually, assuming that s < t , we have

Cov[Xs,Xt ] = Cov[Xs,Xs+(Xt−Xs)] = Var[Xs]+Cov[Xs,Xt−Xs] =

= s + Cov[Xs − X0,Xt − Xs] = s + 0 = min(s, t).

�



Brownian bridges

Let (Xt )t≥0 be a BM.

Definition: if (Xt ) is a BM, (Xt − tX1)0≤t≤1 is a Brownian
bridge.

Alternatively, it can be defined as a Gaussian process (over
(0,1)) with mean function t 7→ E[Xt ] = 0 and autocovariance
function (s, t) 7→ Cov[Xs,Xt ] = min(s, t)(1−max(s, t))
(exercise).

Application:

Let X1, . . . ,Xn be i.i.d. with cdf F .
Let Fn(x) := 1

n
∑n

i=1 I[Xi≤x ] be the empirical cdf.

The LLN implies that Fn(x)
a.s.→ E[I[X1≤x ]] = F (x) as n→∞.

Actually, it can be shown that supx∈R |Fn(x)− F (x)| a.s.→ 0 as n→∞
(Glivenko-Cantelli theorem).



Brownian bridges

Assume that X1, . . . ,Xn are i.i.d. Unif(0,1)
(F (x) = xI[x∈[0,1]] + I[x>1]).
Let Un(x) := 1√

n

∑n
i=1
(
I[Xi≤x ] − x

)
, x ∈ [0,1].

Then it can be shown that, as n→∞,

sup
x∈[0,1]

|Un(x)| D→ sup
x∈[0,1]

|U(x)|,

where (U(x))0≤x≤1 is a Brownian bridge (Donsker’s theorem).
Coming back to the setup where X1, . . . ,Xn are i.i.d. with
(unknown) cdf F , the result above allows for testing{

H0 : F = F0
H1 : F 6= F0,

where F0 is some fixed (continuous) cdf.



Brownian bridges

The so-called Kolmogorov-Smirnov test consists in rejecting H0
if the value of

sup
x∈[0,1]

|Un(x)| := sup
x∈[0,1]

∣∣∣∣ 1√
n

n∑
i=1

(
I[F0(Xi )≤x ] − x

)∣∣∣∣
exceeds some critical value (that is computed from Donsker’s
theorem).
This is justified by the fact that, under H0, F0(X1), . . . ,F0(Xn)
are i.i.d. Unif(0,1) (exercise).


